Supervised representation learning for multi-label classification
نویسندگان
چکیده
منابع مشابه
Semi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملRepresentation Learning for Sparse, High Dimensional Multi-label Classification
In this article we describe the approach we applied for the JRS 2012 Data Mining Competition. The task of the competition was the multi-labelled classification of biomedical documents. Our method is motivated by recent work in the machine learning and computer vision communities that highlights the usefulness of feature learning for classification tasks. Our approach uses orthogonal matching pe...
متن کاملBi-directional Representation Learning for Multi-label Classification
Multi-label classification is a central problem in many application domains. In this paper, we present a novel supervised bi-directional model that learns a low-dimensional mid-level representation for multilabel classification. Unlike traditional multi-label learning methods which identify intermediate representations from either the input space or the output space but not both, the mid-level ...
متن کاملExtreme Learning Machine for Multi-Label Classification
Xia Sun 1,*, Jingting Xu 1, Changmeng Jiang 1, Jun Feng 1, Su-Shing Chen 2 and Feijuan He 3 1 School of Information Science and Technology, Northwest University, Xi’an 710069, China; [email protected] (J.X.); [email protected] (C.J.); [email protected] (J.F.) 2 Computer Information Science and Engineering, University of Florida, Gainesville, FL 32608, USA; [email protected] 3 Department o...
متن کاملSemi-supervised Latent Dirichlet Allocation for Multi-label Text Classification
This paper proposes a semi-supervised latent Dirichlet allocation (ssLDA) method, which differs from the existing supervised topic models for multi-label classification in mainly two aspects. Firstly both labeled and unlabeled learning data are used in ssLDA to train a model, which is very important for reducing the cost by manually labeling, especially when obtaining a fully labeled dataset is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2019
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-019-05783-5